ENZYME REGULATION IN C4 PHOTOSYNTHESIS

Role of Ca2+ in thioredoxin-linked activation of sedoheptulose bisphosphatase from corn leaves

Ricardo A. WOLOSIUK, Cecilia M. HERTIG, Ann N. NISHIZAWA[†] and Bob B. BUCHANAN[†]
Instituto de Investigaciones Bioquímicas, Fundación Campomar, Obligado 2490, 1428 Buenos Aires, Argentina and [†]University of California, Berkeley, CA 94720, USA

Received 12 February 1982

1. Introduction

Thioredoxin is now known to activate (or deactivate) a number of enzymes in different types of cells [1,2]. In regulating certain of these enzymes, thioredoxin appears to act alone, but with others, allosteric modifiers are involved. Members of the latter category include chloroplast fructose 1,6-bisphosphatase (Fru-P₂ase) and sedoheptulose 1,7-bisphosphatase (Sed-P2ase), photosynthetic enzymes whose thioredoxin-linked activation is enhanced by their substrates - viz., fructose 1,6-bisphosphate (Fru-1,6-P₂) and sedoheptulose 1,7-bisphosphate (Sed-1,7-P₂) [3,4]. Recently, Hertig and Wolosiuk found that Ca2+ (or Mn2+) is required in addition to Fru-1,6-P2 for the thioredoxin-linked activation of Fru-P₂ase [5,6]. Interestingly, when present during catalysis, Ca2+ inhibited the enzyme.

In view of the similarity of its mode of regulation to that of chloroplast Fru-P₂ase, we deemed it worthwhile to study the effect of Ca²⁺ on a thioredoxin-linked substrate-specific Sed-P₂ase. Because of its greater stability and more extensive characterization, we selected the enzyme recently purified from leaves of corn [4], a classical C₄ plant, rather than a C₃

Abbreviations: Fru-P₂ase, fructose-1,6-bisphosphatase (EC 3.1.3.11); Fru-1,6-P₂, D-fructose-1,6-bisphosphate; Sed-P₂ase, sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37); Sed-1,7-P₂, D-sedoheptulose-1,7-bisphosphate; DTT, dithiothreitol; EGTA, ethylene glycol bis-(β-aminoethyl ether) N,N,N'N' tetraacetic acid; Tris, Tris-(hydroxymethyl) amino-methane

Dedicated to Dr Luis F. Leloir on the occasion of his 75th birthday

Third paper of a series; first and second papers are identified in [4] and [19]

counterpart [7,8]. We now report that the corn Sed-P₂ase resembles Fru-P₂ase in that activation by chemically- or photochemically-reduced thioredoxin f (the chloroplast thioredoxin specific for the activation of Sed-P₂ase and Fru-P₂ase) requires Ca²⁺ (or Mn²⁺) in addition to substrate (Sed-1,7-P₂). Moreover, as found with the chloroplast Fru-P₂ase, Sed-P₂ase was inhibited when Ca²⁺ was present during catalysis.

2. Materials and methods

2.1. Reagents

Biochemicals were obtained from Sigma Chemical Co. (St. Louis, MO). Solutions of Sed-1,7-P₂ were treated batchwise with Chelex-100. Other chemicals were obtained from commercial sources and were of the highest quality available.

2.2. Analytical methods.

Previously described methods were used for the determination of chlorophyll [9], protein [10], and P_i [11].

2.3. Purification of the components of the ferredoxinthioredoxin system and corn Sed-P₂ase

Procedures previously devised were followed for the purification of ferredoxin [12], and thioredoxin f [13] from spinach leaves, and for ferredoxin—thioredoxin reductase from corn leaves [4]. The procedure in [4] was also used for purification of Sed-P₂ase from corn leaves.

2.4. Preparation of chloroplast membranes

Twice washed chloroplast membranes were pre-

pared from chilled spinach leaves as described in [13, 14].

2.5. Sed-P₂ase assay

The activity of corn Sed- P_2 ase was measured by the two-stage assay devised [15,16]. The P_i released from Sed-1,7- P_2 was determined after preincubation of the enzyme with Ca^{2+} , Sed-1,7- P_2 , and thioredoxin f that was reduced either photochemically via the ferredoxin—thioredoxin system or chemically with DTT.

2.6. Photochemical activation of Sed-P₂ase

The reaction was carried out at 20°C in Warburg-Krippahl vessels containing (in the side-arm) 30 μg of corn Sed-P₂ ase and (in the central compartment) 10 μg of spinach ferredoxin, 60 μg of spinach thioredoxin f, 7 μ g of corn ferredoxin—thioredoxin reductase, twice-washed chloroplast membranes equivalent to 20 µg of chlorophyll, 40 µmol of Tris—HCl buffer (pH 8.4) and, as indicated (in μmol): CaCl₂, 0.08; and Sed-1,7-P2, 0.2. Final volume, 0.42 ml. Vessels were first equilibrated with nitrogen gas for 6 min in the dark and were then illuminated for 5 min. The enzyme, then added from the side-arm, was activated by a 20 min illumination period. Light intensity, 20 000 lux. Following activation, an aliquot (0,05 ml) of the preincubation mixture was injected into the reaction mixture for assaying Sed-P2ase activity.

2.7. Chemical activation of Sed-P₂ase

Corn Sed-P₂ase $(6 \mu g)$ was preincubated for 20 min at 23°C in 0.1 ml of a solution containing 10 μ mol of Tris—HCl buffer (pH 8.4) and, as indicated, 0.25 μ mol of DTT, 0.05 μ mol of Sed-1,7-P₂, 0.02 μ mol of CaCl₂, 8 μ g of spinach thioredoxin f. After preincubation, the mixture was injected in the reaction mixture for assaying Sed-P₂ase activity.

2.8. Assay of Sed-P₂ase activity

Sed- P_2 as activity was assayed at 23°C in a solution containing (in μ mol): Tris—HCl buffer (pH 8.4), 100; MgSO₄, 10; Sed-1,7- P_2 , 1.0; EGTA, 0.1, Final volume, 2.0 ml. After 4 min, the reaction was stopped by adding 2.0 ml of the reagent used for P_i analysis.

3. Results and discussion

During our earlier studies on the regulation of enzymes of photosynthetic CO₂ assimilation in chlo-

Table 1
Activation of corn Sed-P₂ase by Ca²⁺ Sed-1,7-P₂ and DTT-reduced thioredoxin f

Preincubation conditions	Sed-P ₂ ase activity (nmol P _i released)
Complete	23 ^a
- DTT	3
- Sed-1,7-P ₂	0
- Ca ²⁺	11
- thioredoxin f	13
Complete, + EGTA	1

^a When Mn²⁺ (10 μ M) replaced Ca²⁺ in the preincubation mixture, the corresponding Sed-P₂ase activity was 20 nmol P₁ released

Corn Sed-P₂ase was preincubated for 20 min at 23°C in the chemical activation solution described under section 2, plus 0.1 µmol EGTA, as indicated. Following activation Sed-P₂ase activity was assayed as outlined in section 2

roplasts, we devised an assay that consists of two stages, i.e., an activation stage followed by a reaction (catalytic) stage [15,16]. With this assay method, the enzyme is first activated by preincubation with a modifier (activation stage) and then is added to a mixture for measuring catalytic activity (reaction stage). Such a procedure makes it possible to study slow transitions in the conversion of inactive enzyme to a catalytically active form.

By applying the two-stage approach in the current study, we found that activation of corn leaf Sed-P₂ase requires Ca²⁺. As shown in table 1, CaCl₂ (200 μ M) doubled the activity of the enzyme when added to the preincubation mixture with chemically-(DTT) reduced thioredoxin f and substrate, Sed-1,7-P₂. The addition to the preincubation mixture of EGTA, a chelator with high affinity for Ca²⁺, decreased the Sed-P₂ase activity to the basal (nonactivated) level (see also fig.1). As was earlier the case with Fru-P₂ase, a low (10 μ M) concentration of Mn²⁺ could replace Ca²⁺ in the activation of Sed-P₂ase (table 1).

The activation of corn Sed-P₂ase was time-dependent. As shown in fig.1, activation of the enzyme by Ca²⁺, Sed-1,7-P₂, and chemically-reduced thioredoxin f increased progressively with time up to 20 min. Thus, as reported in [4], corn Sed-P₂ase resembles other regulatory enzymes of the reductive pentose phosphate cycle in that it shows hysteretic behavior, i.e., its rate of activation is slow relative to its rate of catalysis [17].

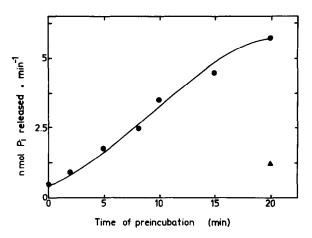


Fig.1. Effect of time of preincubation on the activation of corn Sed-P₂ase by Ca^{2+} , Sed-1,7-P₂ and DTT-reduced thioredoxin f. Corn Sed-P₂ase was preincubated in the presence (\triangle) or in the absence of EGTA (\bigcirc). Except for time of preincubation, experimental conditions were as described in section 2.

In view of the finding that Ca²⁺ (or Mn²⁺) enhanced the activation of Sed-P₂ase by chemically-reduced thioredoxin, the question arose as to whether a divalent metal was required when thioredoxin was reduced photochemically. An answer to this question was obtained in experiments based on our two-stage photochemical assay procedure devised earlier. Corn Sed-P₂ase was:

 (i) Activated by preincubation in the light with Ca²⁺, Sed-1,7-P₂, chloroplast membranes, and components of the ferredoxin—thioredoxin system (ferredoxin, thioredoxin, ferredoxin—thioredoxin reductase);

Table 2
Effect of Ca²⁺ and Sed-1,7-P₂ on the light activation of corn
Sed-P₂ ase via the ferredoxin—thioredoxin system

Preincubation conditions	Sed-P ₂ ase activity (nmol P _i released)
Light, complete	31.2
Light, - Ca ²⁺	22.8
Light, - Sed-1,7-P.	11.6
Light, - Ca ²⁺ , minus Sed-1,7-P,	11.8
Dark, complete	13.2

Conditions and assay of enzyme activity were as described in section 2 for the photochemical activation of $Sed-P_2$ ase. In the last treatment (Dark, complete) the vessels were kept in the dark throughout the preillumination and the reaction periods

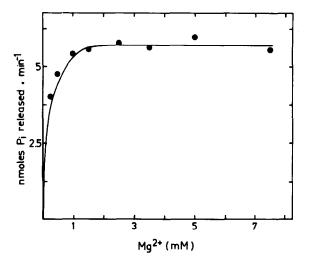


Fig.2. Effect of Mg²⁺ concentration on catalytic activity of corn Sed-P₂ase. Except for varying the Mg²⁺ concentration in the reaction mixture, conditions were as outlined in section 2.

(ii) Assayed in the dark for Sed-P₂ase activity.

As shown in table 2, maximal activation of the enzyme under these conditions was observed when Ca²⁺ was present during the activation stage. Significantly, a similar requirement of Ca²⁺ for activation was also found in independent experiments with the described [4] Fru-P₂ase from corn leaves (Wolosiuk, R. A., unpublished results).

Like its spinach counterpart [7], corn Sed-P₂ase requires a divalent cation for catalysis — Mg^{2+} or, less effectively, Mn^{2+} . When activated by chemically-reduced thioredoxin f and Sed-1,7-P₂ in the absence of Ca²⁺, corn Sed-P₂ase required high (>10 mM) concentrations of Mg^{2+} ($A_{0.5}$ for Mg^{2+} was 5 mM). Addition of Ca²⁺ to the preincubation mixture significantly lowered the Mg^{2+} requirement. Thus, as shown in fig.2, when the preincubation mixture containing chemically reduced thioredoxin f and Sed-1,7-P₂ was supplemented with Ca²⁺, Sed-P₂ase showed full activity at 1 mM Mg^{2+} ($A_{0.5}$ for Mg^{2+} was 0.3 mM). Activation of Sed-P₂ase in the presence of Ca²⁺ thus seems to increase the affinity of the enzyme for Mg^{2+} during catalysis.

In earlier studies with chloroplast $Fru-P_2$ ase from spinach, it was found that Ca^{2+} has a dual effect on the ability of the enzyme to hydrolyze its substrate [5,6]. As described above, Ca^{2+} enhanced the activation of $Fru-P_2$ ase by reduced thioredoxin f and its substrate, but when present during the reaction phase,

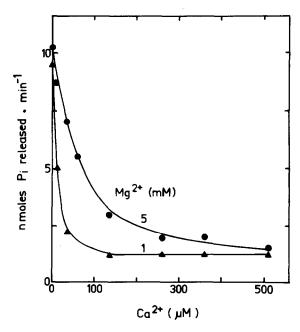


Fig. 3. Effect of Ca^{2+} on the activity of corn Sed-P₂ase. Corn Sed-P₂ase was preincubated with Ca^{2+} , Sed-1,7-P₂, and DTT-reduced thioredoxin f as outlined in section 2. Following activation Sed-P₂ase activity was assayed, as indicated, at two different concentrations of Mg^{2+} and varying concentrations of Ca^{2+} , as described in section 2.

Ca²⁺ inhibited catalysis [18]. Because of its similarity to Fru-P₂ase, we considered it of interest to examine Sed-P₂ase in the latter capacity and found, in keeping with the earlier Fru-P₂ase results, an inhibitory effect of Ca²⁺ on catalysis. As shown in fig.3, Sed-P₂ase, which earlier had been activated by preincubation with Ca²⁺, Sed-1,7-P₂, and chemically-reduced thioredoxin f, was inhibited when Ca²⁺ was added to the reaction mixture. Furthermore, similar to the spinach chloroplast Fru-P₂ase studied earlier, the Ca²⁺-effected inhibition of catalysis depended on the Mg²⁺ concentration. The I_{0.5} for Ca²⁺ dropped from 60 μ M (at 5 mM Mg²⁺) to 10 μ M (at 1 mM Mg²⁺) (cf. fig.3).

4. Concluding remarks

These results provide evidence that photosynthetic Sed-P₂ase purified from corn leaves resembles Fru-P₂ase in requiring both a divalent metal and its sugar phosphate substrate for activation by reduced thioredoxin f. Ca²⁺ (or Mn²⁺) is required for the thioredoxin f-linked activation of both of these enzymes irrespective of whether the thioredoxin is reduced chemically

by DTT or photochemically by chloroplasts supplemented with ferredoxin and ferredoxin—thioredoxin reductase. When activated in the presence of Ca²⁺, corn leaf Sed-P₂ase becomes catalytically active at low concentrations of Mg²⁺ and Sed-1,7-P₂.

Like regulatory enzymes of the reductive pentose phosphate cycle in C₃ plants, the rate of activation of corn leaf Sed-P2ase is slow relative to catalysis, thus confirming that this enzyme, like C₄ Fru-P₂ase, is a member of the hysteretic family of enzymes [4,6]. In view of current knowledge about Fru-P₂ase and Sed-P2ase, it would appear that the ferredoxinthioredoxin system could function jointly with a divalent cation (Ca2+ or Mn2+) and effector substrates in the regulation of these enzymes in C4 as well as C₃ photosynthesis. It is noteworthy that although the total concentration of Ca²⁺ in chloroplasts is apparently high [20,21], contrasting results were reported for the Ca²⁺ content of the stroma [21,22]. Thus, it remains to be seen whether Ca2+ is important in vivo in the activation of the fructose and sedoheptulose bisphosphatases or whether, as suggested in [23], Mg²⁺ is the cation active in this capacity. A related problem that remains unanswered is the relative photosynthetic contribution of the substratespecific Sed-P2 ase studied here to the Sed-P2 ase activity of Fru-P2ase that is unmasked either by dissociation [24] or by preincubation with Ca2+ [6].

Acknowledgements

Two of us (R. A. W. and C. M. H.) gratefully acknowledge the advice and support of Dr Luis F. Leloir and other members of the Instituto de Investigaciones Bioquimicas. C. M. H. is a recipient of a fellowship and R. A. W. is a Career Investigator of the Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina). This work was aided by a Cooperative Research Grant from the National Science Foundation (USA) and the Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina) (Proyecto 042). B. B. B. also acknowledges support from the Competitive Research Grants Office, US Department of Agriculture.

References

[1] Buchanan, B. B., Wolosiuk, R. A. and Schürmann, P. (1979) Trends Biochem. Sci. 4, 93-96.

- [2] Buchanan, B. B. (1980) Ann. Rev. Plant Physiol. 31, 341-374.
- [3] Wolosiuk, R. A., Perelmuter, M. and Chehebar, C. (1980) FEBS Lett. 109, 289-293.
- [4] Nishizawa, A. N. and Buchanan, B. B. (1981) J. Biol. Chem. 256, 6119-6126.
- [5] Hertig, C. M. and Wolosiuk, R. A. (1980) Biochem. Biophys. Res. Commun. 97, 325-333.
- [6] Wolosiuk, R. A. and Hertig, C. M. (1982) submitted.
- [7] Brezeale, V. D., Buchanan, B. B. and Wolosiuk, R. A. (1978) Z. Naturforsch 33c, 521-528.
- [8] Woodrow, I. E. and Walker, D. A. (1980) Biochem. J. 191, 845-849.
- [9] Arnon, D. I. (1949) Plant Physiol. 24, 1-15.
- [10] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [11] Chen, P. S., Toribara, T. V. and Warner, H. (1956) Anal. Chem. 28, 1756-1758.
- [12] Buchanan, B. B. and Arnon, D. I. (1971) Methods Enzymol. 23A, 413-440.
- [13] Wolosiuk, R. A., Crawford, N. A., Yee, B. C. and Buchanan, B. B. (1979) J. Biol, Chem. 254, 1627–1632.

- [14] Kalberer, P., Buchanan, B. B. and Arnon, D. I. (1967) Proc. Natl. Acad. Sci. USA 57, 1542-1549.
- [15] Wolosiuk, R. A., Buchanan, B. B. (1976) J. Biol. Chem. 251, 6456-6461.
- [16] Schürmann, P. and Wolosiuk, R. A. (1978) Biochim. Biophys. Acta 522, 130-138.
- [17] Frieden, C. (1970) J. Biol. Chem. 245, 5788-5799.
- [18] Charles, S. A. and Halliwell, B. (1980) Biochem. J. 188, 775-779.
- [19] Jacquot, J. P., Buchanan, B. B., Martin, F. and Vidal, J. (1981) Plant Physiol. 68, 300-304.
- [20] Portis, A. R. and Heldt, H. W. (1976) Biochim. Biophys. Acta 449, 434–446.
- [21] Yamaghishi, A., Satoh, K. and Katoh, S. (1981) Biochim. Biophys. Acta 637, 252-263.
- [22] Miginiac-Maslow, M. and Hoarau, A. (1977) Plant Sci. Lett. 9, 7-15.
- [23] Rosa, L. (1981) FEBS Lett. 134, 151-154.
- [24] Buchanan, B. B., Schürmann, P. and Wolosiuk, R. A. (1976) Biochem. Biophys. Res. Commun. 69, 970-978.